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Graphene is boasting a profound impact in condensed-matter 
science1,2 and technology3–5. It is an unusually perfect reali-
zation of a two-dimensional (2D) semimetal displaying, in a 

wide range of energies, linearly dispersing conduction and valence 
bands, which touch at the so-called Dirac point. Charge neutrality 
pins the Fermi energy at the apex of the Dirac cones, which are par-
ticularly intriguing because they imply that quasiparticles behave like 
relativistic elementary particles with zero rest mass6.

Dirac conical singularities can emerge in any 2D lattice. In most 
cases they are anisotropic7 and require a fine tuning of the param-
eters that define the lattice8,9. Symmetry arguments, however, show 
that they appear naturally in honeycomb lattices (or, more in general, 
in lattices with underlying triangular symmetry) at the edges of the 
Brillouin zone (BZ). Hence, in the search for Dirac fermions in sys-
tems other than natural graphene, a good starting point is to study 
lattices characterized by triangular symmetry.

The extraordinary properties of graphene, ultimately stemming 
from tunnelling of particles in a honeycomb lattice, have stimulated 
a number of researchers to realize ‘quantum simulators’ of graphene 
and related materials in other systems. These have the advantage of a 
larger degree of control, may offer fundamental insights on the behav-
iour of Dirac fermions and, perhaps, provide hints for future develop-
ments and applications in technology.

Here we review recent experimental and theoretical advances in 
the realization of ‘artificial graphene’ (AG), or more precisely, artifi-
cially prepared hexagonal or hexagonal-like lattices. There are many 
reasons to study such artificial systems. (i) In most of the systems we 
discuss in this Review, the main effort is to design and control tun-
nelling of electrons, atoms and photons in a designed hexagonal or 
hexagonal-like lattice. This allows regimes of parameters that are not 
accessible in natural graphene to be reached. A paradigmatic example 
is the regime of strong spin–orbit coupling, which is easy to reach in 
AG, but is not accessible in natural graphene. (ii) In AG interparti-
cle interactions can be largely controlled by a variety of means, either 
by controlling the type of particles and their density or by applying 
external optical or magnetic schemes. One can therefore switch con-
tinuously from weak to strong interparticle interactions. In certain 
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systems the role of strong anisotropic dipolar interactions can even be 
investigated. (iii) Additionally, AG offers the possibility of designing, 
realizing and studying with local spectroscopy the interplay between 
Dirac physics and artificial defects. (iv) Finally, in some of the artifi-
cial honeycomb systems addressed here, the timescales of dynamics 
are very long (milliseconds for atoms, for example). This fact provides 
the unique opportunity to study the dynamical behaviour of many-
particle effects in vivo, and thus address fundamental questions such 
as, for instance, persistence of topological states of matter with respect 
to noise and so on.

Recent advances have demonstrated the possibility of creating AG 
in diverse subfields of low-energy physics. Current methods of design 
and synthesis that will be addressed here include (i) nanopatterning 
of ultrahigh-mobility 2D electron gases (2DEGs)10–15, (ii) molecule-
by-molecule assembly of honeycomb lattices on metal surfaces by 
scanning probe methods16, (iii) trapping ultracold fermionic and 
bosonic atoms in honeycomb optical lattices17–19, and (iv) confining 
photons in honeycomb photonic crystals20–23.

We present an overview of the state of the art of this emerging 
multidisciplinary field and offer perspectives on possible future 
developments.

Designing and probing Dirac bands in artificial lattices 
Artificial graphene structures offer a playground for comprehending 
physical phenomena related to the Dirac energy/momentum disper-
sion relation in regimes that are difficult to achieve in natural gra-
phene. We now discuss the most relevant AG lattices for electrons, 
atoms and photons explored so far. These systems have complemen-
tary physical properties that enable the investigation of a wide range 
of phenomena.

Figure 1 summarizes four different approaches used to obtain AG 
and the relevant tunable parameters. It can be argued that whereas 
the molecular, atomic and photonic analogues of graphene offer an 
unprecedented control over particle tunnelling, the nanofabricated 
semiconductor analogue enables the exploration of the impact of 
long-range interactions and many-body effects. Cold atoms in hon-
eycomb optical lattices offer similar advantages, enriched by the 
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possibility of studying the interplay between many-particle effects 
and strong spin–orbit coupling on timescales of hundreds of milli-
seconds. Technologically, however, the semiconductor route to AG 
offers the key advantage of scalability as silicon and III–V materials 
are suitable for conventional top-down nanofabrication approaches. 
The realization of AG in semiconductors requires, however, a fine 
control over disorder (to the end of minimizing it with respect to for 
example, inter-site tunnelling), whereas the other analogues of gra-
phene are either disorder free (for example, cold atoms) or charac-
terized by tunnelling energy scales that are substantially larger than 
disorder (for example, molecules deposited on metals).

Confining electrons. In 1970, Esaki and Tsu realized the possibil-
ity of engineering energy bands by artificially modulating the poten-
tial in one direction24. This pioneering work stimulated a large effort 
focused on bandgap engineering in semiconductor heterostructures 
that, thanks to the refinement of nanofabrication techniques, even-
tually led to the development of lateral superlattices–semiconductor 
systems characterized by a 2D periodic potential modulation25.

Exploitation of these artificial crystals started in the late 1980s and 
enabled the observation of Weiss oscillations26, chaotic dynamics and 
Hofstadter butterfly phenomena27,28. Similar effects have been recently 
observed in natural graphene on hexagonal boron nitride29–31.

High-quality 2D patterns with nanoscale dimensions in semi-
conductor structures hosting ultrahigh-mobility electrons can be 
achieved by a combination of electron-beam nanolithography, etch-
ing and metallic-gate deposition. This combination yields an external 
potential landscape with honeycomb geometry that acts as a lattice of 
potential wells (such as quantum dots) to trap electrons and/or holes. 
The spatial resolution of these techniques can reach values of a few 
tens of nanometres or even below. Further improvements in spatial 

resolution can be obtained by bottom-up nanofabrication methods, 
for example, by designing semiconductor lattices by nanocrystal self-
assembly32. These approaches allow to independently control the elec-
tron density and inter-site distances and to tune the interplay between 
on-site (U) and nearest-neighbour (V) repulsive interactions and sin-
gle-particle hopping energy (t), opening the way to the observation 
of collective phenomena and quantum phase transitions in such AG 
solid-state systems.

Recent experimental results obtained in honeycomb patterns 
defined on 2DEGs in GaAs quantum heterostructures paved the way 
for the realization of semiconductor AG11–14. Experimental results in 
the regime U/t >> 1 reveal13 unique low-lying collective excitations, 
such as ‘anomalous spin waves’, in the inelastic light scattering spectra 
(as shown in Fig. 5a–c). Although the presence of Dirac fermions has 
not been experimentally demonstrated yet in these systems, several 
theoretical studies10,11,14 indicate that Dirac bands can be designed 
to occur under realistic conditions. For example, elementary tight-
binding calculations suggest that Dirac cones extending for 1 meV 
can be obtained by tuning the quantum dot spacing to 20 nm, a value 
reachable by using nanofabrication methods.

A completely different route to realize solid-state AG has been 
recently followed in ref. 16 (Fig. 2). These authors succeeded in mak-
ing AG structures with a lattice constant of a few nanometres by plac-
ing CO molecules on top of a Cu substrate with the aid of the tip of 
a scanning tunnelling microscope (STM; Fig.  2a,b). By probing the 
density of states of the confined electrons through STM measurements 
(Fig. 2d) and their evolution as a function of an applied pseudo-mag-
netic field the authors proved the formation of Dirac bands with the 
characteristic Landau levels of Dirac fermions2,6. Although the screen-
ing exerted by the bulk states below the 2DEG on the Cu(111) surface 
makes these ‘molecular graphene’ structures not the ideal candidates 
for exploring many-body effects, the large versatility in the atomic 
design allows unprecedented local control to embed, map and tune 
the symmetries underlying the 2D Dirac equation. In this system, the 
authors estimate U/t ~0.5 using known material parameters16. Within 
the Cu system, there is room to increase the strength of effective inter-
actions by reducing t with larger lattices, or else the atomic manipula-
tion scheme may be extended to other substrates with lower screening 
effects in a quest to realize interacting phases.

The band structure of molecular graphene can be understood by 
assuming that the superlattice potential created by the CO molecules 
acts as a weak perturbation on the parabolic band that describes the 
Cu surface state. The superlattice potential is most effective at chang-
ing the parabolic dispersion at the edges of the superlattice BZ. Results 
of such a perturbative calculation are shown in Fig. 2c. The super-
lattice potential hybridizes the six unperturbed Cu surface states, 
which lie at the corners of the new BZ. The effective Hamiltonian at 
each corner of the BZ is given by a 3 × 3 matrix, which gives rise to a 
doublet (blue and green bands in Fig. 2c) and a singlet (red band in 
Fig. 2c). The doubly degenerate state leads to an effective Dirac equa-
tion. This ‘nearly free’ electron scheme can be generalized to include 
the effects of strain16 and spin–orbit coupling33. Similar approaches 
can be applied to describe Dirac bands in AG in semiconductors10,11. 
The general symmetries of the triangular lattice uniquely determine 
these couplings, which have the same form as graphene34,35. In par-
ticular, spatially patterning the hopping by means of STM atom 
manipulation allows the generation of both gauge (pseudo)electric 
and (pseudo)magnetic fields (Fig. 2e,f). Global changes in the lattice 
constant in molecular graphene add a simple scalar potential to the 
Dirac Hamiltonian equivalent to an electrical field, which changes the 
chemical potential or ‘doping’16. Local changes to the lattice constant 
engineer a strain introducing a vector potential equivalent to a large 
perpendicular magnetic field16,36,37 , here tunable up to 60 T (Fig. 2f). 
Finally, creating an alternating bond structure in the form of a Kekulé 
distortion was shown (Fig. 2e) to attach mass to the formerly massless 
Dirac fermions, akin to the Higgs field38–40.
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Figure 1 | Artificial graphene structures experimentally obtained by different 
methods. a–d, Bottom: the main tunable parameters of each approach: V0 
is the lattice depth, d is the lattice constant and N the number of sites. The 
parameter U(V) is the strength of the on-site (nearest-neighbour) repulsion 
and t is the single-particle hopping energy. TF is the Fermi temperature. 
a, Scanning electron micrograph of the surface of a nanopatterned gallium 
arsenide heterostructure. The distance between two dots is ~130 nm. 
b,c, Molecular graphene systems (b) and optical lattices for cold atoms (c). 
In panel b, red(black) spheres represent the oxygen(carbon) atoms of carbon 
monoxide molecules whereas the yellow–orange surfaces represent the 
electron density in a honeycomb pattern. In panel c, green and purple spheres 
represent cold atoms. d, Photonic honeycomb crystals made by optical 
induction methods. Δn is the change of refractive index induced by laser 
irradiation; c0 is the coupling constant between waveguides, which plays the 
role of t. There is no gap in this system except for the one that is induced by 
strain in the form of Landau levels. Panel c courtesy of L. Fallani. 
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For future experiments, the availability of semiconductors (InAs, 
InSb and so on) and metals (Ag, Au and so on) with large spin–orbit 
coupling creates concrete and exciting possibilities to explore topo-
logical phases of artificial matter with these approaches11,33,41,42.

Confining photons. Photonic crystals offer an additional route to 
design energy dispersion relations with characteristic Dirac points43. 
In such crystals, the unusual transmission properties near a Dirac 
point20–22 were predicted and observed experimentally.

The state of the art of photonic crystals operating in the micro-
wave frequency range is well described in ref. 44. In this work the 
crystal is 2D and composed of rows of metallic cylinders, which 

are arranged to form a triangular lattice. Electromagnetic waves 
propagating in such a periodic structure, composed of metallic cyl-
inders with radius R = 0.25α, where α ~20 mm is the lattice constant, 
exhibit a dispersion relation with several Dirac points. In the vicin-
ity of a Dirac point, the measured reflection spectra resemble the 
STM spectra of graphene flakes45. In a subsequent work46, extremal 
transmission through a microwave photonic crystal and the obser-
vation of edge states close to Dirac points were also demonstrated. 
The authors of ref. 46 have shown that the transmission through this 
crystal displays a pseudo-diffusive 1/L dependence on the thick-
ness, L, of the crystal. They also measured the eigenmode intensity 
distributions in a rectangular microwave billiard that contains a 
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Figure 2 | Designer Dirac fermions in molecular graphene. a, Artificial molecular graphene16 is fabricated by means of atom manipulation, and then 
imaged and locally probed by scanning tunnelling microscopy. Carbon monoxide molecules are individually positioned (blue arrow) with the STM tip 
into a triangular lattice on a copper substrate. The lateral spacing between copper atoms is 2.55 Å. b, STM topograph of molecular graphene during 
assembly, showing 2D surface-state electrons repelled from the molecules and guided into a honeycomb lattice (black lines; blue arrow shows the 
same as in panel a). The lateral spacing between carbon monoxide molecules is 19.2 Å. c, Band structure of molecular graphene calculated using the 
nearly free electron model applied to the periodically perturbed surface electron gas10. A Dirac-band crossing appears at the K point of the superlattice 
BZ. d, Pristine quasi-neutral graphene exhibits emergent massless Dirac fermions (d = 19.2 Å, t = 90 meV, tʹ= 16 meV, where tʹ is the second nearest-
neighbour hopping energy). e, Graphene with a Kekulé distortion (t1 =2t2) dresses the Dirac fermions with a scalar gauge field creating mass 
(0.1±0.02me, where me is the bare electron mass in vacuum). t1 and t2 are the different strengths of the nearest-neighbour hopping energy. f, Graphene 
with a triaxial strain distortion embeds a vector gauge field condensing a time-reversal-invariant relativistic quantum Hall phase (shown here for a large 
pseudo-magnetic field of 60 T). In the theory panels (top), images are colour representations of the strength of the effective carbon–carbon bonds 
(corresponding to tight-binding hopping parameters t), and the curves shown are calculated electronic density of states (DOS) from tight-binding (TB) 
theory. Insets show gapless and gapped Dirac cones matching the experimental data. In the experiment panels (bottom), STM topographs acquired 
after molecular assembly (100 Å field of view, T = 4.2 K) are shown, and the curves are normalized tunnel conductance spectra obtained from the 
associated nanomaterial. Figure adapted with permission from: a,b, ref. 101, © 2012 NPG; d–f, ref. 16, © 2012 NPG. 
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triangular photonic crystal. Close to the Dirac point there appear 
states at the straight edge of the photonic crystal that represent the 
artificial counterpart of the states at a zigzag edge of natural gra-
phene. Topological phase transitions of Dirac points in anisotropic 
honeycomb lattices have also been recently observed47.

Since 2007, intensive studies of honeycomb lattices constructed by 
the method of optical induction have been performed. The honey-
comb structure in ref. 23 was induced by the intensity pattern I(x,y) 
of three interfering plane waves, which is translated into a change in 
the refractive index Δn through the nonlinearity in a photorefractive 
crystal. Such a lattice exhibits several Dirac points, termed23 diabolical 
points after M. V. Berry and M. Wilkinson. The paraxial evolution of 
the complex amplitude Ψ of a probe beam propagating in the lattice is 
governed by a Schrödinger-like equation 

  (1)

Here, V0 controls the relative values of potential depth and non-
linearity strength and Φ is defined in Fig.  3 caption. The resulting 
wave dynamics have been extensively studied23 offering evidence of 
the unique phenomenon of conical diffraction (predicted by W. R. 

+  i
∂ψ
∂z

Δ2ψ V0 ψ
1+I(x,y)+ Φ 2 

= 0_

Hamilton in the nineteenth century) around the singular diabolical 
points connecting the first and second bands. Furthermore, ‘honey-
comb gap solitons’, residing in the gap between the second and the 
third band, were also observed.

In recent years, several theoretical papers were published concern-
ing various aspects of the physics of honeycomb photonic lattices. 
These include studies of (i) parity and time-reversal symmetry, (ii) 
nonlinear wave dynamics, (iii) persistence of the Klein effect and (iv) 
breakdown of conical diffraction due to nonlinear interactions48,49. 
The culmination of these studies has been presented in refs 50–52. 
Reference 50 describes combined theoretical and experimental work 
on the creation and destruction of topological edge states in ‘optical 
graphene’, where, after the application of uniaxial strain, two Dirac 
points merge resulting in the formation of a bandgap. Effectively, edge 
states are created (destroyed) on the zigzag (‘bearded’) edge of the 
structure. Moreover, the authors of ref. 50 have claimed the observa-
tion of a novel type of bearded edge state, which cannot be explained 
by the standard tight-binding theory, whereas they can be classified as 
Tamm states lacking any surface effect. This is an example that high-
lights how AG structures might provide insights on physics beyond 
that displayed by natural graphene. A second complementary work51 
demonstrates the creation of synthetic magnetic fields and ‘photonic 
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Landau levels’ separated by bandgaps in the spatial spectrum of the 
structured dielectric lattice (Fig. 3). This is the photonic analogue of 
the relativistic electron Landau levels observed in strained molecular 
graphene16 (Fig. 2f). Finally, a photonic Floquet topological insulator 
based on an AG structure of helical waveguides, evanescently cou-
pled to one another, has been proposed in ref. 52. Two-dimensional 
photonic topological insulators based on optical spin–orbit coupling 
— achieved through the use of a metamaterial composed of split-ring 
resonators — have been proposed in ref. 53.

Confining atoms and ions. Ultracold atoms are routinely used as 
efficient quantum simulators of Bose–Hubbard and Fermi–Hubbard 
models, lattice spin models and so on54. In recent years, a great deal 
of attention has been devoted to quantum simulations involving 
honeycomb optical lattices with the aim to seek out novel phenom-
ena that are beyond reach in carbon-based 2D honeycomb crystals. 
Optical lattices are, for example, flexible in the sense that their geom-
etry can be changed in situ. Cold atoms in optical lattices, moreover, 
can be forced into regimes or be subject to external fields, which are 
difficult to achieve in or inaccessible to natural graphene. Examples 
include the regime of ultrastrong spin–orbit coupling55 and non-Abe-
lian gauge fields56,57 akin to those that appear in the Lagrangian of 
quantum chromodynamics. Note that with the advent of molecular 

graphene16, proposals now also exist for realizing non-Abelian gauge 
fields in solid-state incarnations58. Last, but not least, ultracold gases 
offer novel means to control the nature, strength and range of inter-
particle interactions54.

The authors of ref. 18 have pioneered attempts to create flexible 
honeycomb lattices. In this work the first realization of an ultracold 
(87Rb) Bose gas in a spin-dependent optical lattice with hexagonal 
symmetry was reported. The basic structure of this lattice is detailed 
in Fig. 4a–e. The interplay between band-structure effects and interac-
tions between atoms leads to interesting many-body physics18, which 
will be discussed below. One should stress that Dirac physics was not 
studied in ref. 18. However, this work represents the first realization 
of a hexagonal lattice that, if loaded with fermions, can give access 
to graphene-like physics, but it can also serve to realize57 topological 
insulators that use lattice shaking and next-neighbour tunnelling.

The authors of ref. 19 have carried out pioneering work on cold 
(40K) Fermi gases in honeycomb optical lattices. They have created, 
moved and merged Dirac points in a tunable honeycomb lattice. 
More recently, the same authors have studied double transfer through 
Dirac points in a honeycomb optical lattice59. These authors measured 
the quasi-momentum distribution of the atoms after they sequentially 
passed through two Dirac points and observed a double-peak feature 
in the fraction of atoms transferred to the second band (both as a 
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function of the bandgap at the Dirac points and the quasi-momentum 
of the trajectory). The flexibility of the lattice used in these experi-
ments is illustrated in Fig. 4f,g. The lattice geometry is controlled by 
tuning the relative intensities of three retro-reflected laser beams, 
allowing the creation of chequerboard, triangular and honeycomb 
lattices. In the limit in which one of the lasers has an intensity that is 
much larger than the other two, a lattice of weakly coupled 1D chains 
can be realized.

More work on atoms confined in flexible optical lattices will be 
reviewed in the next section. Trapped ions provide perhaps the best 
quantum controlled systems available nowadays60. Experimental 
studies on trapped ion systems have focused so far on the simulation 
of the Dirac equation encoded in motional and internal degrees of 
freedom of a trapped ion in 3+1 and 1+1 space–time dimensions, and 
its consequences, such as Zitterbewegung61 and the Klein paradox62. 
There is, however, a large ongoing effort towards scalable ion systems, 
using, for instance, arrays of microtraps or self-assembled lattices, 
where several hundreds of ions in a triangular lattice can be stored63.

Strong correlations and topological phases 
The most interesting phases of matter emerge in systems with a mac-
roscopically large number of degrees of freedom in the presence of 
interactions. The great advantage of artificial honeycomb lattices is 
that interactions among electrons, atoms, ions and photons can be 
engineered and largely tuned. In artificial semiconductor lattices, for 
example, the kinetic energy can be quenched by applying a magnetic 
field, thereby emphasizing the role of long-range Coulomb interac-
tions13. In ultracold atomic gases, the strength of interactions can be 
tuned at will by using Feshbach resonances54,64. Finally, significant 

photon–photon interactions can be achieved by utilizing nonlinear 
optical media, thereby offering the possibility of realizing strongly 
interacting fluids of light65.

Hubbard correlations and split bands. The Hubbard model66 is 
the cornerstone of the physics of strongly correlated systems. The 
Hubbard Hamiltonian encodes a daunting competition between t and 
U (refs 67–69). The single-band Fermi–Hubbard Hamiltonian reads: 

ni, ni,=–tΣ i,j σ(ĉ† ĉ i,σ j,σ+Hc)+UΣi Ĥ  (2)
 

Here ĉ†
i,σ(ĉi,σ) creates (destroys) a fermion with spin σ at site i of the 

lattice and n̂i,σ = ĉ†
i,σĉi,σ is the spin-resolved number operator, Hc is the 

Hermitian conjugate. In the first term, the sum is over all pairs <i,j> 
of nearest-neighbour sites. A straightforward generalization of equa-
tion (2) to the bosonic case exists70,71.

When interactions are negligible (U/t << 1), the ground state of 
the honeycomb-lattice Fermi–Hubbard Hamiltonian is semimetal-
lic with linearly dispersive massless-Dirac-fermion conduction and 
valence bands touching at two inequivalent points in the BZ. In the 
non-perturbative regime, U/t >~ 1, the ground-state phase diagram 
of this model has been extensively studied by means of quantum 
Monte Carlo (QMC) techniques72. Early on it was shown that at 
half filling and for U/t >~ 5 a semimetal–Mott insulator transition 
occurs73. Recently, a QMC calculation has demonstrated74 the exist-
ence of a gapped antiferromagnetic phase for U/t  >~  4.3 and pre-
sented evidence for a gapped spin liquid phase for 3.5 < U/t < 4.3. 
The findings of ref. 74 have been recently addressed in ref. 75 that 
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Figure 5 | Many-body effects in artificial honeycomb lattices. a, Resonant inelastic light scattering spectra (at B = 5.48 T and T = 1.7 K) of a high-mobility 
2DEG in the presence of a honeycomb lateral superlattice13 showing the ordinary cyclotron mode and the Hubbard mode. b, Evolution of the energies of the 
cyclotron mode (black filled circles) and of the Hubbard mode (at frequencies ωHB; red filled squares) at T = 1.7 K. The black dashed line is a linear fit to the 
data, ħωc = ħeB /m*c) where m* = 0.067me. The red dashed line is a fit of the type ħωc = α√B— where α ~2 meV. c, Energies of two spin collective modes: the 
ordinary spin-wave mode (black circles) and an anomalous spin-flip mode (red triangles). The black dashed line is a linear fit to the data, ESW = |g|μBBT, with 
|g| = 0.42. Representative excitation spectra of both spin modes at two different laser energies are reported in the inset, BT is the total magnetic field and Θ the 
tilt angle of the sample with respect to the magnetic field. The black squares label the splitting Δ between the two spin modes (spin flip, SF; spin wave, SW). 
d, Superfluid-to-Mott-insulator transition in a spin-dependent honeycomb optical lattice18. The visibility of the interference fringes in a time-of-flight 
experiment is plotted as a function of the lattice depth (in units of the recoil energy). At the superfluid-to-Mott-insulator transition the visibility drops down 
considerably. Data labelled by blue symbols refer to the superfluid-to-Mott-insulator transition in a spin-independent hexagonal lattice, that is, mF = 0. The 
other two curves refer to finite values of mF, as indicated in the inset. Figure reproduced with permission from: a-c, ref. 13, © 2011 AAAS; d, ref. 18, © 2011 NPG.
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used QMC simulations of the same model but in larger clusters 
(containing up to 2,592 sites) and found very weak evidence of a 
spin liquid phase75.

An ‘extended’ Hubbard model involving an additional interaction 
term describing nearest-neighbour repulsions of strength V has been 
studied analytically by renormalization-group (RG) techniques in the 
limit of a large number Nf of fermion flavours76,77 (Nf = 4 for electrons 
in graphene). It has been found76,77 that sufficiently large values of V/t 
stabilize charge-density-wave phases over semimetallic or Mott insu-
lating phases. Numerical RG calculations78 have qualitatively con-
firmed these results but have also discovered that second-neighbour 
repulsions favour states with spontaneously broken time-reversal 
symmetry (that is, quantum spin Hall phases) over charge- or spin-
density waves.

Finally, it has been shown79 that, when the Fermi energy is moved 
away from the Dirac point and the system is doped to the vicinity of 
a van Hove singularity in the density of states (such as the one that 
occurs at the M point of the honeycomb-lattice band structure2), 
repulsive short-range interactions favour chiral superconductivity 
over many other competing orderings. An alternative route to non-
conventional superconductivity in AG and related compounds relies 
on the suppression of long-range forces, while keeping80,81 U/t ~1. We 
stress that, so far, it is not clear which of the exotic phases mentioned 
above can be observed experimentally. This is a challenge for future 
theoretical and experimental work.

Strong correlations leave deep scars on the excitation spectrum 
of a many-body system. The simplest example is represented by 
a gapped collective mode between ‘Hubbard split bands’. In the 
strongly correlated or ‘atomic’ U/t >> 1 limit the Fermi–Hubbard 
model displays two bands66,82, which are split by the repulsive inter-
action energy U arising from having two fermions with antiparal-
lel spin on the same site. In the atomic limit it is therefore natural 
to expect a gapped collective mode in which particles belonging to 
the lower Hubbard band are cooperatively promoted to the upper 
Hubbard band. Such a mode has been observed in a Bose–Einstein 
condensate in a deep 3D optical lattice83 and, more recently, in a 
semiconductor artificial honeycomb lattice13 (Fig. 5). This AG sys-
tem displays also an anomalous ‘spin-flip’ mode (Fig. 5c) that could 
stem from the removal of the sublattice degeneracy due to inter-
site Coulomb repulsions84. Explorations of Hubbard excitations and 
anomalous spin-flip modes can be extended to molecular and pho-
tonic AG once interactions in these systems are turned on.

A plethora of many-body effects and lattice models can be very 
effectively simulated by using cold atoms54. Although these systems 
can be easily driven into the strongly correlated regime, they present 
a few setbacks, mostly in terms of dynamic timescales and thermali-
zation. In ref. 18, the combined effects of the lattice and interatomic 
interactions led to a forced antiferromagnetic Néel order, in which 
two spin-components localize at different lattice sites. Coexistence 
of Mott-insulator- and superfluid-type order leads to the formation 
of a forced supersolid. Next-nearest-neighbour tunnelling seems to 
play a role in the physics described in ref. 18, a fact that paves the 
way for the realization of the famous Haldane model85. Later on, the 
authors of ref. 86 reported the observation of a quantum phase transi-
tion to a multi-orbital superfluid phase in an optical lattice. In this 
unconventional superfluid, the local phase angle of the complex order 
parameter is continuously twisted between neighbouring lattice sites. 
The nature of this twisted superfluid quantum phase is an interac-
tion-induced admixture of the p-orbital contributions favoured by 
the graphene-like band structure of the hexagonal optical lattice used 
in the experiment.

In ref.  87 various forms of frustrated classical ferromagnetism 
have been studied by transforming the lattice geometry from square 
to triangular to an array of linear chains and back. Finally, in a recent 
experimental work88 novel instances of quantum magnetism of ultra-
cold fermions have been reported. In this work, short-range magnetic 

order has been achieved by loading two-component Fermi gases in 
either a dimerized or anisotropic simple cubic optical lattice. Flexible 
kagome lattices have been recently studied in ref. 89.

Long-range interactions. Electrons in nanopatterned 2DEGs13 
offer a natural system for studying correlation effects in the pres-
ence of long-range Coulomb interactions. The applicability of the 
Hubbard model to describe these systems is questionable because 
the long-range tail of the Coulomb interaction is not screened at the 
neutrality point.

In recent years, several efforts have been made90,91 to describe 
electrons moving in a honeycomb lattice and interacting through the 
non-relativistic Coulomb force. In this case the strength of interac-
tions is measured by the dimensionless parameter2,6,72, αee ≡ e2/(εħνF), 
where e is the absolute value of the electron’s charge, ε is a suitably 
defined dielectric constant and νF is the Fermi velocity. This param-
eter, which formally resembles72 the quantum electrodynamics fine-
structure constant, plays the role of the U/t coupling constant in the 
Hubbard model66.

Quantum Monte Carlo calculations predict91 the occurrence of an 
excitonic insulating phase at a critical value αee ~_ 1.1 of the coupling 
constant for Nf = 4 fermion flavours. Note that electrons in natural sus-
pended graphene are characterized by αee ~_ 2.2 (because, in this case, 
ε ~1 and νF  ~106 m  s–1). Weak-field magneto-transport experiments 
have been carried out92 in high-quality suspended samples. No experi-
mental evidence of a gapped phase has been reported so far in nearly 
neutral natural graphene92. The observed behaviour is more consistent 
with the existence of a strong renormalization of νF (ref. 92) and an RG 
flow towards weak coupling. When the system is doped away from the 
neutrality point, screening kicks in and the electron fluid behaves as a 
Fermi liquid, albeit with a number of intriguing twists72,93,94.

Electrons in artificial honeycomb lattices therefore offer the unique 
opportunity for studying strong correlation effects, which are beyond 
reach in natural graphene. The role of long-range electron–electron 
interactions in AG has been studied by means of density functional 
theory in ref. 95. Electron–electron interactions have been demon-
strated95 to shift the threshold for the emergence of isolated Dirac 
points to larger well depths than found without the interactions10,11. 
This effect is particularly pronounced when the number of electrons 
per well is increased.

Long-range interactions can nowadays also be studied in the 
realm of atomic physics. Experimental advances in cooling atoms 
with permanent dipole moments and polar molecules have indeed 
made it possible to study quantum gases with dipolar interactions. 
More experimental and theoretical details can be found in recent 
review articles96,97.

Summary and perspectives
In this Review we have discussed recent progress in the creation of 
AG focusing on nanopatterning of high-mobility 2DEGs in semicon-
ductors, molecule-by-molecule assembly via scanning probe meth-
ods, confining photons in dielectric crystals and optical trapping of 
cold atoms in crystals of light. Lattices of superconducting circuits98 
may also offer further opportunities for studying strongly correlated 
phases of light in honeycomb structures. Furthermore, fully tunable 
plasmonic analogues of graphene can be realized in 2D honeycomb 
lattices of metallic nanoparticles99.

The occurrence of fragile interaction-induced broken-symmetry 
states in AG might be pre-empted by external unwanted random 
potentials, which induce inhomogeneities in the particle-number dis-
tribution. Controlled sources of disorder can, however, be exploited 
to investigate the interplay between disorder and interactions100, and 
the occurrence of ‘Bose glass’70 phases.

Finally, we foresee useful applications of AG for the realization of 
new topological phases of matter, and the engineering of Abelian and 
non-Abelian gauge fields.
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